AMD fully transitions to new architecture and new technology in the second quarter of next year

AMD fully transitions to new architecture and new technology in the second quarter of next year Although the competitor's 32nm process has been basically universalized, and its own production has not yet been produced, AMD's prospects for the new process are ambitious and it is planned that it will be fully converted in 2012.

At present, the main shipments of AMD desktop processors are of course the 45nm process, Phenom II and Athlon II series with Socket AM3 interface, and in just over a year they will be completely eliminated, being bulldozers, Brazos/Llano APU in different fields. Replaced by.

AMD expects that by the second quarter of 2012, about 20% of its desktop processor shipments will be 32nm process-fabricated Socket AM3+ packaged bulldozers Zambezi, which is the AMD FX series; about 10% will be manufactured in 40nm processes. Brazos APU Low Power Convergence Platform in Socket FT1 package, namely AMD E/C series; 70% of the rest are all Llano APU high performance fusion platforms with 32nm process manufacturing and Socket FM1 interface, or AMD. A series, which can also be seen AMD's determination and efforts to promote Fusion APU in the mainstream market.

On the other hand, with the popularity of new architectures and new processes, Athlon, Phenom, and other processor brands that have been fighting for years will gradually withdraw from the arena.

In fact, according to the roadmap, after more than a year, high-performance, low-power fusion processors based on enhanced bulldozers and new 28nm technologies will all be born. The former is still a 32nm process, but it will also integrate DX11 GPU graphics cores. .

According to the latest plan, Llano APU will be produced and released in the second quarter of this year, and the Zambezi processor will be produced and released in June.

Magnetic properties of Sintered NdFeB magnets:

Magnetic properties of Sintered NdFeB magnets:
Grade Remanence Coercive Force Intrinsic Coercive Force Max. energy product Max.
Operating
Temperature
Br Hcb Hcj (BH ) Tw
max
mT kA/m kA/m kJ/m3
(kGs) (kOe) (kOe) (MGOe)
N35 1170-1220 ≥868 ≥955 263-287 80 °C
(11.7-12.2) (≥ 10.9) (≥ 12) (33-36)
N38 1220-1250 ≥899 ≥955 287-310 80 °C
(12.2-12.5) (≥ 11.3) (≥ 12) (36-39)
N40 1250-1280 ≥907 ≥955 302-326 80 °C
(12.5-12.8) (≥ 11.4) (≥ 12) (38-41)
N42 1280-1320 ≥915 ≥955 318-342 80 °C
(12.8-13.2) (≥ 11.5) (≥ 12) (40-43)
N45 1320-1380 ≥923 ≥955 342-366 80 °C
(13.2-13.8) (≥ 11.6) (≥ 12) (43-46)
N48 1380-1420 ≥923 ≥876 366-390 80 °C
(13.8-14.2) (≥ 11.6) (≥ 12) (46-49)
N50 1400-1450 ≥796 ≥876 382-406 80 °C
(14.0-14.5) (≥ 10.0) (≥ 11) (48-51)
N52 1430-1480 ≥796 ≥876 398-422 60°C
(14.3-14.8) (≥ 10.0) (≥ 11) (50-53)
35M 1170-1220 ≥868 ≥1114 263-287 100 °C
(11.7-12.2) (≥ 10.9) (≥ 14) (33-36)
38M 1220-1250 ≥899 ≥1114 287-310 100 °C
(12.2-12.5) (≥ 11.3) (≥ 14) (36-39)
40M 1250-1280 ≥923 ≥1114 302-326 100 °C
(12.5-12.8) (≥ 11.6) (≥ 14) (38-41)
42M 1280-1320 ≥955 ≥1114 318-342 100 °C
(12.8-13.2) (≥ 12.0) (≥ 14) (40-43)
45M 1320-1380 ≥995 ≥1114 342-366 100 °C
(13.2-13.8) (≥ 12.5) (≥ 14) (43-46)
48M 1370-1430 ≥1027 ≥1114 366-390 100 °C
(13.7-14.3) (≥ 12.9) (≥ 14) (46-49)
50M 1400-1450 ≥ 1033 ≥1114 382-406 100 °C
(14.0-14.5) (≥ 13.0) (≥ 14) (48-51)
35H 1170-1220 ≥868 ≥1353 263-287 120 °C
(11.7-12.2) (≥ 10.9) (≥ 17) (33-36)
38H 1220-1250 ≥899 ≥1353 287-310 120 °C
(12.2-12.5) (≥ 11.3) (≥ 17) (36-39)
40H 1250-1280 ≥923 ≥1353 302-326 120 °C
(12.5-12.8) (≥ 11.6) (≥ 17) (38-41)
42H 1280-1320 ≥955 ≥1353 318-342 120 °C
(12.8-13.2) (≥ 12.0) (≥ 17) (40-43)
45H 1320-1360 ≥963 ≥1353 342-366 120 °C
(13.2-13.6) (≥ 12.1) (≥ 17) (43-46)
48H 1370-1430 ≥955 ≥1353 366-390 120 °C
(13.7-14.3) (≥ 12.5) (≥ 17) (46-49)
35SH 1170-1220 ≥876 ≥1592 263-287 150 °C
(11.7-12.2) (≥ 11.0) (≥ 20) (33-36)
38SH 1220-1250 ≥907 ≥1592 287-310 150 °C
(12.2-12.5) (≥ 11.4) (≥ 20) (36-39)
40SH 1240-1280 ≥939 ≥1592 302-326 150 °C
(12.5-12.8) (≥ 11.8) (≥ 20) (38-41)
42SH 1280-1320 ≥987 ≥1592 318-342 150 °C
(12.8-13.2) (≥ 12.4) (≥ 20) (40-43)
45SH 1320-1380 ≥ 1003 ≥1592 342-366 150 °C
(13.2-13.8) (≥ 12.6) (≥ 20) (43-46)
28UH 1040-1080 ≥764 ≥1990 207-231 180 °C
(10.4-10.8) (≥ 9.6) (≥ 25) (26-29)
30UH 1080-1130 ≥812 ≥1990 223-247 180 °C
(10.8-11.3) (≥ 10.2) (≥ 25) (28-31)
33UH 1130-1170 ≥852 ≥1990 247-271 180 °C
(11.3-11.7) (≥ 10.7) (≥ 25) (31-34)
35UH 1180-1220 ≥860 ≥1990 263-287 180 °C
(11.8-12.2) (≥ 10.8) (≥ 25) (33-36)
38UH 1220-1250 ≥876 ≥1990 287-310 180 °C
(12.2-12.5) (≥ 11.0) (≥ 25) (36-39)
40UH 1250-1280 ≥ 899 ≥1990 302-326 180 °C
(12.5-12.8) (≥ 11.3) (≥ 25) (38-41)
42UH 1280-1320 ≥ 899 ≥1990 318-342 180 °C
(12.8-13.2) (≥ 11.3) (≥ 25) (40-43)
28EH 1040-1080 ≥780 ≥2388 207-231 200 °C
(10.4-10.8) (≥ 9.8) (≥ 30) (26-29)
30EH 1080-1130 ≥812 ≥2388 223-247 200 °C
(10.8-11.3) (≥ 10.2) (≥ 30) (28-31)
33EH 1130-1170 ≥876 ≥2388 247-271 200 °C
(11.3-11.7) (≥ 10.5) (≥ 30) (31-34)
35EH 1170-1220 ≥876 ≥2388 263-287 200 °C
(11.7-12.2) (≥ 11.0) (≥ 30) (33-36)
38EH 1220-1250 ≥899 ≥2388 287-310 200 °C
(12.2-12.5) (≥ 11.3) (≥ 30) (36-39)
40EH 1250-1280 ≥899 ≥2388 302-326 200 °C
(12.5-12.8) (≥ 11.3) (≥ 30) (38-41)
28AH 1040-1080 ≥787 ≥2624 207-231 230 °C
(10.4-10.8) (≥ 9.9) (≥ 33) (26-29)
30AH (1080-1130) ≥819 ≥2624 223-247 230 °C
(10.8-11.3) (≥ 10.3) (≥ 33) (28-31)
33AH 1130-1170 ≥843 ≥2624 247-271 230 °C
(11.3-11.7) (≥ 10.6) (≥ 33) (31-34)
35AH (1170-1220) ≥ 876 ≥2624 263-287 230 °C
(11.7-12.2) (≥ 11.0) (≥ 33) (33-36)
38AH 1220-1250 ≥ 899 ≥2624 287-310 230 °C
(12.2-12.5) (≥ 11.3) (≥ 33)

Strong Sintered Rare Earth Magnets

Powerful permanent neodymium Magnet, Strong Sintered Rare Earth Magnets, Super Strong Neodymium Magnet

Ningbo Wewinmagnet Co.,Ltd , http://www.wewinmagnet.com

Posted on